요약 :
Autoimmune inner ear disease is characterized by progressive, bilateral although asymmetric, sensorineural hearing loss. Patients with autoimmune inner ear disease had higher frequencies of interferon-c-producing
T cells than did control subjects tested. Human adipose-derived mesenchymal stem cells (hASCs) were recently found to suppress effector T cells and inflammatory responses and therefore have beneficial effects in various autoimmune diseases. The aim of this study was to examine the immunosuppressive activity of hASCs on autoreactive T cells from the experimental autoimmune hearing loss (EAHL) murine model. Female BALB/c mice underwent b-tubulin immunization to develop EAHL; mice with EAHL were given hASCs or PBS intraperitoneally once a week for 6 consecutive weeks. Auditory brainstem responses were examined over time. The T helper type 1 (Th1)/Th17-mediated autoreactive responses were examined by determining the proliferative response and cytokine profile of splenocytes stimulated with b-tubulin. The frequency of regulatory T (Treg) cells and their suppressive capacity on autoreactive T cells were also determined. Systemic infusion of hASCs significantly improved hearing function and protected hair cells in established EAHL. The hASCs decreased the proliferation of antigen-specific Th1/Th17 cells and induced the production of anti-inflammatory cytokine interleukin-10 in splenocytes.
They also induced the generation of antigen-specific CD4+ CD25+ Foxp3+ Treg cells with the capacity to suppress autoantigen-specific T-cell responses. The experiment demonstrated that hASCs are one of the important regulators of immune tolerance with the capacity to suppress effector T cells and to induce the generation of antigen-specific Treg cells.
[카테고리:] <span>논문</span>
Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells
요약 :
Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are capable of differentiating into several lineages and possess immunomodulatory properties. In this study, we investigated the soluble factor-mediated immunomodulatory effects of hAM-MSCs. Mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation was suppressed by hAM-MSCs in a dose-dependent manner as well as hAM-MSC culture supernatant. Moreover, interferon-gamma and interleukin (IL)-17 production significantly decreased from PBMC, whereas IL-10 from PBMCs and transforming growth factor beta (TGF-β) production from hAM-MSCs significantly increased in co-cultures of hAM-MSCs and PBMCs. Production of several MSC factors, including hepatocyte growth factor (HGF), TGF-β, prostaglandin E2 (PGE2), and indoleamine 2, 3 dioxygenase (IDO), increased significantly in hAM-MSCs co-cultured with PBMCs. These results indicate that the immunomodulatory effects of hAM-MSCs may be associated with soluble factors (TGF-β, HGF, PGE2, and IDO), suggesting that hAM-MSCs may have potential clinical use in regenerative medicine
Evaluation of the potential use of adipose-derived mesenchymal stromal cells in the treatment of canine atopic dermatitis: a pilot study.
요약 :
Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are capable of differentiating into several lineages and possess immunomodulatory properties. In this study, we investigated the soluble factor-mediated immunomodulatory effects of hAM-MSCs. Mitogen-induced peripheral blood mononuclear cell (PBMC) proliferation was suppressed by hAM-MSCs in a dose-dependent manner as well as hAM-MSC culture supernatant. Moreover, interferon-gamma and interleukin (IL)-17 production significantly decreased from PBMC, whereas IL-10 from PBMCs and transforming growth factor beta (TGF-β) production from hAM-MSCs significantly increased in co-cultures of hAM-MSCs and PBMCs. Production of several MSC factors, including hepatocyte growth factor (HGF), TGF-β, prostaglandin E2 (PGE2), and indoleamine 2, 3 dioxygenase (IDO), increased significantly in hAM-MSCs co-cultured with PBMCs. These results indicate that the immunomodulatory effects of hAM-MSCs may be associated with soluble factors (TGF-β, HGF, PGE2, and IDO), suggesting that hAM-MSCs may have potential clinical use in regenerative medicine
Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats.
발행연도 : 2011
저자 : Ko MS, HG Park, YM Yun, JC Ra, T Shin and KK Lee
출처 : Neural Regeneration Research
소스 : 지방 MSC
Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE
Treatment with
cyclophosphamide or ASC can change miRNAs and decrease miR-96-5p and miR-182-5p expression,
as well as decreasing the CD138 proportion and the Th1/Th2 ratio, which might be involved in the
therapeutic mechanism.
Anti-inflammatory Effects of Oct4/Sox2-overexpressing Human Adipose Tissue-derived Mesenchymal Stem Cells
Background/Aim: The transcription factors Oct4
and Sox2 enhance the proliferation and pluripotency of
human adipose tissue-derived mesenchymal stem cells (hATMSCs);
however, the anti-inflammatory effects of Oct4- and
Sox2-overexpressing hAT-MSCs (Oct4/Sox2-hAT-MSCs) are
unclear. Here, we evaluated the anti-inflammatory effects of
Oct4/Sox2-hAT-MSCs in vitro and in vivo.
Accordingly, in this study, the anti-inflammatory effects
of lentivirus-transduced Oct4/Sox2-hAT-MSCs were
investigated by determining the expression of
inflammation-related cytokines in macrophage cell lines
treated with conditioned medium in vitro. In addition,
sickness scores (diarrhea, eye condition, activity and fur
condition) and survival rates were used to evaluate the antiinflammatory
effects of the engineered hAT-MSCs in a
mouse model.
Lessons learned from cloning dogs.
요약 :
The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals
Generation of transgenic dogs that conditionally express green fluorescent protein
요약 :
We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP
vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFPpositive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model
will be useful for a variety of medical research studies
Recloned dogs derived from adipose stem cells of a transgenic cloned beagle
요약 :
A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning
Generation of red fluorescent protein transgenic dogs.
요약 :
Dogs (Canis familiaris) share many common genetic diseases with humans and development of disease models using a transgenic approach has long been awaited. However, due to the technical difficulty in
obtaining fertilizable eggs and the unavailability of embryonic stem cells, no transgenic dog has been generated. Canine fetal fibroblasts were stably transfected with a red fluorescent protein (RFP) gene-expressing
construct using retrovirus gene delivery method. Somatic cell nuclear transfer was then employed to replace the nucleus of an oocyte with the nucleus of the RFPfibroblasts. Using this approach, we produced the first
generation of transgenic dogs with four female and two male expressing RFP