[카테고리:] <span>기타</span>

Comparison of human muscle-derived stem cells and human adipose-derived stem cells in neurogenic trans-differentiation.

요약 : 
Purpose: Erectile dysfunction (ED) remains a major complication from cavernous nerve injury during radical prostatectomy. Recently, stem cell treatment for ED has been widely reported. This study was conducted to investigate the availability, differentiation into functional cells, and potential of human muscle-derived stem cells (hMDSCs) and human adipose-derived stem cells (hADSCs) for ED treatment. Materials and Methods: We compared the neural differentiation of hMDSCs and hADSCs. Human muscle and adipose tissues were digested with collagenase, followed
by filtering and centrifugation. For neural induction, isolated hMDSCs and hADSCs were incubated in neurobasal media containing forskolin, laminin, basic-fibroblast growth factor, and epidermal growth factor for 5 days. Following neural induction, hMDSCs and hADSCs were differentiated into neural cells, including neurons and glia, in vitro.
Results: In neural differentiated hMDSCs (d-hMDSCs) and differentiated hADSCs (d-hADSCs), neural stem cell marker (nestin) showed a significant decrease by immunocytochemistry, and neuronal marker (β-tubulin III) and glial marker (GFAP) showed a significant increase, compared with primary hMDSCs and hADSCs. Real-time chain reaction analysis and Western blotting demonstrated significantly elevated levels of mRNA and protein of β-tubulin III and GFAP in d-hADSCs compared with d-hMDSCs.
Conclusions: We demonstrated that hMDSCs and hADSCs can be induced to undergo phenotypic and molecular changes consistent with neurons. The neural differentiation capacity of hADSCs was better than that of hMDSCs

Quantification of early adipose-derived stem cell survival: comparison between sodium iodide symporter and enhanced green fluorescence protein imaging.

요약 : 
Objective: Strategies to overcome the problem of extensive early stem cell loss following transplantation requires a method to quantitatively assess their efficacy. This study compared the ability of sodium/iodide symporter (NIS) and enhanced green fluorescent protein (EGFP) imaging to monitor the effectiveness of treatments to enhance early stem cell survival.
Methods: Human adipose-derived stem cells (ADSCs) transduced with an adenoviral vector to express both NIS and EGFP were mixed with culture media (control), matrigel (matrigel group) or pro-survival cocktail
(PSC group), and 5×106 cells were injected into thigh muscles of C57BL/6 mice. Animals underwent serial optical imaging and 99mTcO4 - scintigraphy. Image-based EGFP fluorescence and 99mTcO4 - uptake was measured by region-of-interest analysis, and extracted tissues were measured for 99mTc activity. Fluorescent intensity measured from homogenized muscle tissue was used as reference for actual amount of viable ADSCs.
Results: ADSCs were efficiently transduced to express EGFP and NIS without affecting proliferative capacity. The absence of significant apoptosis was confirmed by annexin V FACS analysis and Western blots for activated caspase-3. Both fluorescence optical imaging and 99mTcO4 - scintigraphy visualized implanted cells in living mice for up to 5days. However, optical imaging displayed large variations in fluorescence intensity, and thus failed to detect difference in cell survival between groups or its change over time. In comparison, 99mTcO4 -scintigraphy provided more reliable assessment of within-in group donor cell content as well as its temporal change. As a result, NIS imaging was able to discern beneficial effects of matrigel and pro-survival cocktail treatment on early ADSC survival, and provided quantitative measurements that correlated to actual donor cell content within implanted tissue.
Conclusion: NIS reporter imaging may be useful for noninvasively assessing the efficacies of strategies designed to improve early survival of transplanted stem cell

Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

요약 :
Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function.
Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serumstarved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-a, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colonystimulating factor, and transforming growth factor (TGF)-b in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFNa, G-CSF, and TGF-b. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function

In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors.

요약 : 
The homing properties of adipose tissue-derived mesenchymal stem cells (AdMSCs) have stimulated intravenous applications for their use in stem cell therapy. However, the soluble factors and corresponding cellular
receptors responsible for inducing chemotaxis of AdMSCs have not yet been reported. In the present study, the migration capacity of human AdMSCs (hAdMSCs) toward various cytokines or growth factors (GFs) and the expression of their receptors were determined. In a conventional migration assay, PDGF-AB, TGF-β1, and TNF-α showed the most effective chemoattractant activity. When AdMSCs were preincubated with various chemokines or GF, and then allowed to migrate toward medium containing 10% FBS, those preincubated with TNF-α showed the highest migratory activity. Next, hAdMSCs were either preincubated or not with TNF-α, and allowed to migrate in response to various GFs or chemokines. Prestimulation with TNF-α increased the migration activity of hAdMSCs compared to unstimulated hAdMSCs. When analyzed by FACS and RT-PCR methods, hAdMSCs were found to express C-C chemokine receptor type 1(CCR1), CCR7, C-X-C chemokine receptor type 4 (CXCR4), CXCR5, CXCR6, EGF receptor, fibroblast growth factor receptor 1, TGF-β receptor 2, TNF receptor superfamily member 1A, PDGF receptor A and PDGF receptor B at both the protein and the mRNA levels. These results indicate that the migration capacity of hAdMSCs is controlled by various GFs and chemokines. Prior in vitro modulation of the homing capacity of hAdMSCs could stimulate their movement into injured sites in vivo when administered intravenously, thereby improving their therapeutic potential.

Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse.

요약 :
Adipose-derived mesenchymal stem cells (AdMSCs) augment the ability to contribute to microvascular remodeling in vivo and to modulate vascular stability in fresh fat grafts. Although cryopreserved adipose tissue is frequently used for soft tissue augmentation, the viability of the fat graft is poor. The effects of culture-expanded human adipose tissue-derived mesen-chymal stem cells (hAdMSCs) on the survival and quality of the cryopreserved fat graft were determined. hAdMSCs from the same donor were mixed with fat tissues cryopreserved at –70°C for 8 weeks and injected subcutaneously into 6-week-old BALB/c-nu nude mice. Graft volume and weight were measured, and histology was evaluated 4 and 15 weeks post-transplantation. The hAdMSC-treated group showed significantly enhanced graft volume and weight. The histological evaluation demonstrated significantly better fat cell integrity compared with the vehicle-treated control 4 weeks post-transplantation. No significant dif-ference in graft weight, volume, or histological parameters was found among the groups 15 weeks post-transplantation. The hAdMSCs enhanced the survival and quality of transplanted cryopreserved fat tissues. Cultured and expanded hAdMSCs have reconstructive capacity in cryopreserved fat grafting by increasing the number of stem cells

Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow.

요약 : 
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into lineages of mesenchymal tissues that are currently under investigation for a variety of therapeutic applications. The purpose of this study was to compare cytokine gene expression in MSCs from human placenta, cord blood (CB) and bone marrow (BM). The cytokine expression profiles of MSCs from BM, CB and placenta (amnion, decidua) were compared by proteome profiler array analysis. The cytokines that were expressed differently, in each type of MSC, were analyzed by real-time PCR. We evaluated 36 cytokines. Most types of MSCs had a common expression pattern including MIF (GIF, DER6), IL-8 (CXCL8), Serpin E1 (PAI-1), GROα(CXCL1), and IL-6. MCP-1, however, was expressed in both the MSCs from the BM and the amnion. sICAM-1 was expressed in both the amnion and decidua MSCs. SDF-1 was expressed only in the BM MSCs. Real-time PCR demonstrated the expression of the cytokines in each of the MSCs. The MSCs from bone marrow, placenta (amnion and decidua) and cord blood expressed the cytokines differently. These results suggest that cytokine induction and signal transduction are different in MSCs from different
tissues

New Isolation Technique and Culture System for Clinical Applications of Human Amniotic Epithelial Stem Cells.

요약 : 
태반은 성체줄기세포의 보고이다. 특히 양막상피세포는 배아줄기세포의 줄기세포 능력을 나타내는 세포 표면표시자들을 그대로 발현하는 줄기세포로 알려져 있다. 하지만 상피세포를 실험실에서 지지세포 없이 대량 증식 배양하는 것은 상피세포가 가지고 있는 내인성 성격으로 인해 어렵다. 본 연구에서는 디티오트레이톨(Dithiothreitol; DTT)과 ROCK 저해제(Rho-associated kinase inhibitor)를 이용하여 양막상피세포를 분리하고 배양하는데 있어서 임상적용이 가능한 수준의 세포를 얻었고, 최적의 세포상태를 유지하였다. 본 연구에서 분리배양된 양막상피세포는 상피세포의 특성과 줄기세포의 특성을 발현하였다. 결론적으로 줄기세포 치료를 이용한 재생의학의 관점에서 인간태반 유래 양막상피줄기세포는 아무런 윤리적인 논란을 일으키지 않는 주요한 줄기세포 치료제의 재료로서 여러 가지 질병 치료에 사용될 수 있을 것이다.

Comparison of neural cell differentiation of human adipose mesenchymal stem cells derived from young and old ages

요약 : 
최근 골수와 혈액으로 유래된 중간엽 줄기세포와 비슷한 능력을 가지는 것으로 알려진 지방 유래 중간엽줄기세포가 새로운 세포 치료제로 떠오르고 있다. 하지만 줄기세포를 이용하여 치료하려는 질병은 나이가 들어감에 따라 발병하는 퇴행성 질환들이 대부분인데, 노화가 진행됨에 따라 줄기세포의 능력이 차이가 있다고 알려져 있다. 이에 본 연구에서는 노화가 일어남에 따라 발생되는 신경성 질환을 자가 유래 지방 중간엽 줄기세포를 이용하여 치료함에 있어서 노화가 진행됨에 따라 얻어진 지방줄기세포가 세포학적으로 변화는 없는지에 대해 줄기세포 성장능, 생존율과 신경세포로의 분화유도 능력을 비교하였다. 30대, 40대, 50대에서 사람 지방 유래 줄기세포를 분리 배양하여 연령별 계대에 따른 세포수와 생존율을 측정하고, 줄기세포 성장능력을 비교 분석하였고, 지방 줄기세포를 신경세포 배양 조건 하에서 10일 동안 배양하여 신경 분화능력을 연령별로 비교하였다. 실험결과, 세포수와 생존율, 세포 모양이 연령과 계대별에 의해 차이가 없다는 것을 확인하였다. 신경 분화 후 면역형광염색법을 통해 분석한 결과, 연령에 따른 신경 분화능력의 차이가 관찰되지 않았다. 분자 유전적학으로 신경세포 마커의 발현을 mRNA 수준에서 분석한 결과, 연령별 간의 차이가 몇 개의 유전자 발현을 제외하고는 차이가 발견되지 못했다. 하지만 계대가 진행될수록 50대군의 줄기세포에서 MAP2와 Sox2의 mRNA 발현이 30대군의 줄기세포에 비해 상대적으로 낮게 발현됨이 확인되었다. 결론적으로 자가 지방 중간엽 줄기세포의 신경세포 분화능력이 연령에 상관없이 차이가 없음이 관찰되었으며, 이는 나이 든 사람으로부터 얻어진 지방 줄기세포도 젊은 사람에서 얻어진 세포와 마찬가지 능력으로 자가 세포 치료제로 사용될 수 있다는 점을 말해주고 있다.

Isolation and characterization of mesenchymal stem cells from human amnion and decidua.

요약 : 
Objectives: The purpose of this study is to isolate a population of multipotent cells from human amnion and decidua, respectively.
Methods: Human placentas (gestational age, 30~42 weeks) were obtained after vaginal or cesarean deliveries. Amnions and deciduas were divided mechanically. The collected cells from the amnion and decidua were cultured. Cultured cells were immunophenotypically characterized. The adipogenic, osteogenic and neurogenic differentiation capacities were tested, and their growth kinetics were analyzed.

Enhanced hepatogenic transdifferentiation of human adipose tissue mesenchymal stem cells by gene engineering with Oct4 and Sox2.

요약 : 
Mesenchymal stem cells (MSCs) are attractive candidates for clinical repair or regeneration of damaged tissues. Oct4 and Sox2, which are essential transcription factors for pluripotency and self-renewal, are naturally expressed in MSCs at low levels in early passages, and their levels gradually decrease as the passage number increases. Therefore, to improve MSC proliferation and stemness, we introduced human Oct4 and Sox2 for conferring higher expansion and differentiation capabilities.

  • 1
  • 2